Information für die Wissenschaft Nr. 55 | 24. Juni 2024

Priority Programme “Utilization and Development of Machine Learning for Molecular Applications – Molecular Machine Learning” (SPP 2363)

The Senate of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) has established the Priority Programme „Utilization and Development of Machine Learning for Molecular Applications – Molecular Machine Learning” (SPP 2363). The programme is designed to run for six years; the present call invites proposals for the second three-year funding period.

This programme aims at connecting communities from the fields of machine learning and data science with scientists working in the areas of molecular chemistry and pharmacology. Machine learning for molecular applications and questions (Molecular Machine Learning, MML) has emerged as an area of interest with a high potential to change current workflows in all fields of chemistry as well as pharmacology. As such, it poses several outstanding challenges. This Priority Programme aims at tackling these challenges in a holistic fashion, covering a spectrum of topics ranging from data generation and the application of new algorithms to explainable artificial intelligence (ExAI). In general, all projects are required to contribute to the whole MML community by developing reusable tools, methodologies, datasets or broadly utilisable applications. Each proposal must be positioned at the interface of chemistry/pharmacology and machine learning in at least one of the following five areas: 

  • design and evaluation of molecular representations for machine learning; 
  • machine learning as a tool for theoretical and organic chemistry; 
  • machine learning for medicinal chemistry and drug design; 
  • overcoming data limitations by data generation, evaluation and data-free approaches;
  • development of machine learning tools for molecular applications including ExAI, data augmentation strategies and software suites.

The funding period aims at improving methodologies for MML and understanding underlying principles. Therefore, new representations need to be developed, datasets are to be generated and methods need to be adapted, based on knowledge from the chemical and computer science domains. Within these topics, projects designed to gain deep knowledge about chemical and chemo-informatic relationships are highly encouraged. In addition, first feasibility studies should be carried out, examining state-of-the-art concepts on various applications. The focus of the second funding period is on using prior knowledge to develop these applications further and transform them into software tools that are usable in scientists’ day-to-day work. These tools should not only be applied in the MML domain but impact different areas of chemistry as well as pharmacology. As developments in the field of MML will further accelerate, it is necessary that, if required by the state of knowledge, all topics addressed can be eligible for funding within both periods. 

While machine learning has many applications in various overlapping fields, this programme specifically focuses on MML. This excludes the modelling of protein surfaces, properties of entire materials and periodic systems if these are not predominantly governed by the molecular constituents (e. g. molecular crystals). This also excludes projects that target the development or improvement of heterogeneous catalysts without explicitly describing them by their molecular structure. 

All of the above-mentioned areas must not be considered in isolation but should be closely connected or integrated. This link must be explicitly presented in the proposal. Since MML is a highly interdisciplinary field of research, applicants need to belong to various subject areas that can roughly be assigned to three groups: computer and data science (C), practical chemistry (P) and theoretical chemistry and chemoinformatics (T). In order to promote interdisciplinarity and networking, the applicants’ research areas need to be anchored within at least two of these three groups. Ideally, this will be realised by tandem proposal of researchers from complementary areas that can be closely linked.

Proposals must be written in English and submitted to the DFG by 29 October 2024. Please note that proposals can only be submitted via elan, the DFG’s electronic proposal processing system. To enter a new project within the existing Priority Programme, go to Proposal Submission – New Project/Draft Proposal – Priority Programmes and select “SPP 2363/2” from the current list of calls. Previous applicants can submit a proposal for the renewal of an existing project under Proposal Submission – Proposal Overview/Renewal Proposal.

Applicants must be registered in elan prior to submitting a proposal to the DFG. If you have not yet registered, please note that you must do so by 15 October 2024 to submit a proposal under this call; registration requests received after this time cannot be considered. You will normally receive confirmation of your registration by the next working day. Note that you will be asked to select the appropriate Priority Programme call during both the registration and the proposal process.

In preparing your proposal, please review the programme guidelines (DFG form 50.05, section B) and follow the proposal preparation instructions (DFG form 54.01). These forms can either be downloaded from our website or accessed through the elan portal. In addition to submitting your proposal through elan, please send an electronic copy (PDF file) to the programme coordinator Frank Glorius (contact details below). 

The review meeting for the Priority Programme will be held on 29 and 30 January 2025 in Münster. 

Further Information

More information on the Priority Programme is available at:

The elan system can be accessed at:

DFG forms 50.05 and 54.01 can be found at:

For scientific enquiries, please contact the Priority Programme coordinator:

  • Professor Dr. Frank Glorius, Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, 
    Corrensstr. 36, 48149 Münster, phone +49 251 83-35345, 

For questions related to the DFG review process, please contact:

For administrative questions regarding the DFG proposal, please contact: