This year ten researchers – including four women and six men – will receive the Heinz Maier-Leibnitz Prize, the most important award for early career researchers in Germany. The recipients were chosen by a selection committee in Bonn appointed by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the Federal Ministry of Education and Research (BMBF). The prizewinners will each be presented with the €20,000 prize on 3 May in Berlin. This will be followed by a celebration of the 40th anniversary of the Heinz Maier-Leibnitz Prize.
In his research, Andreas Geiger deals with the broad field of computer vision, in which he has already achieved international renown. His work combines machine vision and robotics. Geiger’s main aim is to understand the basic principles of autonomous intelligent systems, especially in the area of autonomous driving. His work is therefore highly relevant not only socially, but also economically. Many of the algorithms he has developed are now being used by research teams and companies throughout the world and his scientific papers have already won multiple awards. Since 2016 Geiger has led the independent Max Planck research group ‘Autonomous Machine Vision’. In the same year he was offered an interim professorship at ETH Zurich, in one of the world’s biggest and most renowned labs for computer vision.
As a postdoctoral researcher Christian Gross was involved in the pioneering development of microscopes for the observation of single atoms in optical grids. This enabled him to model a wide range of quantum systems experimentally and answer questions at the boundary of statistical physics and quantum mechanics. Gross achieved important results relating to phase transitions, magnetic correlations and non-equilibrium systems. Another key area of his work is the physics of Rydberg superatoms, with which he has generated new types of quantum crystals, for example. In 2015 Gross received an ERC Starting Grant for his project ‘Rydberg-dressed Quantum Many-Body Systems’ in order to advance research with his team that could pave the way for the design of quantum magnets.
How do our attitudes influence our choices and ability to make moral judgements? When do personal experiences turn into prejudices? Mandy Hütter seeks answers to questions like these. She demonstrates that not all attitudes are the result of conscious learning processes and that moral judgements are also dependent on ‘situational cues’. Hütter has published her results in internationally respected journals. In clinical practice they have proved useful in interventional approaches for phobias and are also creating new insights in the area of social prejudices, the study of democratic processes and the ‘wisdom of the many’. Hütter, who also regularly presents her work to the general public, is a junior professor and the leader of the Social and Organisational Psychology group at the University of Tübingen. She also leads an Emmy Noether independent junior research group.
Difficulty dealing with emotions and regulating them through changed evaluation is not limited to people with a range of psychological disorders: the same applies to healthy people who have an increased risk of developing such disorders. This is one finding from the work of psychologist Philipp Kanske, who studies the influence of emotions on the way we think and perceive things. He combines basic research with clinical studies, which enables him to adopt an original perspective on the topic at various psychological levels. With approximately 50 publications to date, Kanske has already had a notable impact on clinical-psychological neuroscience. In 2015 he was appointed to the Junge Akademie of the Berlin-Brandenburg Academy of Sciences and Humanities and the German National Academy of Sciences Leopoldina. At the Max Planck Institute in Leipzig he leads the Research Unit ‘Psychopathology of the Social Brain’.
Since 2013 Kirchlechner has led the working group ‘Nano-/Micromechanics of Materials’ at the Max Planck Institute for Iron Research in Düsseldorf, where he and his team study the deformation and failure of materials in mesoscopic dimensions. The team’s combination of micromechanical experiments and innovative methods for the characterisation of structures – including the so-called micro-Laue method – is unique. One measurement method co-developed by Kirchlechner makes it possible to investigate the influence of atomic defects on specific material properties. It therefore provides answers to key questions in materials science and engineering, specifically the mechanisms of fine grain hardening and the formation of dislocation structures during fatigue processes. Kirchlechner is already considered an internationally recognised expert in micromechanical experiments on synchrotrons.
Olivier Namur collected a number of awards while still a student in Belgium and now publishes in his specialist field – the study of volcanic systems and magmatic processes on Earth, the Moon and Mercury – with remarkable impact in international bodies. Namur has developed thermodynamic models not only of the crystallization of magmas, but also of their physical properties. His research has also resulted in new experimental high-pressure, high-temperature methods. Another focus of Namur’s research is the investigation and modelling of the textures of minerals in igneous rock, which contain information about the transport of materials and temporal processes in the Earth’s deep crust. In recent years this has included crystal mushes, magmas with a very high crystalline content, which reach the surface as fragments due to eruptions and could provide clues as to the structure of the Earth’s lower crust.
Ute Scholl’s field is the study of hypertension, especially (pre)disposition to this condition due to genetic defects in ion channels and ion transporters. After writing her doctoral thesis on CIC-K chloride channels, which produced a number of highly regarded publications, in her postdoctoral phase she became the first researcher to describe a new syndrome and its genetic basis, which is associated with epilepsy, inner ear hearing loss, ataxia and renal salt loss. Scholl’s research has made a significant contribution to the understanding of the hormonal degeneration processes that lead to secondary hypertension with consequences such as cardiac circulatory disorders or stroke. Since 2014 Scholl has been a junior professor in Experimental Nephrology and Hypertensiology at the University of Düsseldorf. In 2016 she served as deputy spokesperson of the Junges Kolleg of the North Rhine-Westphalian Academy of Sciences, Humanities and the Arts. Her work has won numerous awards, including the Walter Clawiter Prize and the Ingrid zu Solms Research Prize.
With his dissertation ‘Verisimilitudo. Die epistemologischen Voraussetzungen der Gotteslehre Abaelards’ and his habilitation thesis ‘Theologie aus anthropologischer Ansicht – Der Entwurf Franz Oberthürs (1745–1831)’, within a few years Michael Seewald established himself as an expert in dogmatics and ecumenical theology. The former won the Cardinal Wetter Prize of the Catholic Academy in Bavaria, while the latter was awarded the Karl Rahner Prize presented by the University of Innsbruck. Through his habilitation thesis, in particular, Seewald presented a fundamental work on the reception of the European Enlightenment in the environment of Catholic dogmatics, which, through an individual person, also sheds new light on the general relationship between the Catholic Church and modernity. This fills an important gap in research. Since January 2016, Seewald has taught as a private lecturer in dogmatics and ecumenical theology at LMU Munich.
Marion Silies began to study the motion perception of Drosophila as a postdoctoral researcher at Stanford University. Since 2014 she has led the Emmy Noether independent junior research group ‘The Cellular and Molecular Basis of Motion Perception’ at the University of Göttingen. In this group she investigates the outstanding question of how neural networks perform critical calculation operations and how sensory systems use these calculations to extract information from the environment and control behaviour. Among the tools Silies uses is a genetic ‘toolbox’, established by her and now used by countless laboratories worldwide. With this toolbox researchers can manipulate neural function in specific cells and thus identify the neural networks of motion perception. Silies has won multiple awards for her work. In 2016 she received an ERC Starting Grant for her project ‘MicroCyFly’.
Within comparative literature, Evi Zemanek’s fields of research range from antiquity to the present day. In the field of cultural ecology and ‘ecocriticism’, which investigates literary texts in the context of ecological aspects, she is considered a pioneer in German-language literature studies. In 2012 she established the DFG early career researcher network ‘Ethics and Aesthetics of Literary Representations of Ecological Transformations’, on behalf of which she organised six groundbreaking conferences. Since her dissertation ‘Das Gesicht im Gedicht’ (2010), intermediality research, especially the relationship of literature to painting, photography and architecture, has been another key aspect of her scholarly work. Zemanek is a junior professor of Modern German Literature and Intermediality at the University of Freiburg. In the winter semester 2016/2017 she will serve as an interim professor in the Institute of Media and Cultural Studies.